Co-expression of neighbouring genes in Arabidopsis: separating chromatin effects from direct interactions

Author:

Chen Wei-Hua,de Meaux Juliette,Lercher Martin J

Abstract

Abstract Background In all eukaryotic species examined, genes that are chromosomal neighbours are more similar in their expression than random gene pairs. Currently, it is still unclear how much of this local co-expression is caused by direct transcriptional interactions, and how much is due to shared chromatin environments. Results We analysed neighbouring genes in Arabidopsis thaliana. At large intergenic distances (>400 bp), divergently and convergently transcribed gene pairs show very similar levels of co-expression, mediated most likely by shared chromatin environments. At gene distances below 400 bp, co-expression is strongly enhanced only for divergently transcribed gene pairs, indicating bi-directional transcription from a single promoter. Conversely, co-expression is suppressed for short convergently or uni-directionally transcribed pairs. This suppression points to transcriptional interference concentrated at the 3' end, e.g., in the context of transcription termination. Conclusions Classifying linked gene pairs by their orientation, we are able to partially tease apart the different levels of regional expression modulation. (i) Regional chromatin characteristics modulate the accessibility for regulation and transcription, regardless of gene orientation; the strength of this chromatin effect can be assessed from divergently or convergently transcribed distant neighbours. (ii) Shared promoter regions up to 400 bp in length enhance the co-expression of close bi-directional neighbours. (iii) Transcriptional interference of close neighbours is concentrated at the 3' ends of genes, and reduces co-expression on average by 40%.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3