Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress

Author:

Dubey Sonali,Misra Prashant,Dwivedi Sanjay,Chatterjee Sandipan,Bag Sumit K,Mantri Shrikant,Asif Mehar H,Rai Arti,Kumar Smita,Shri Manju,Tripathi Preeti,Tripathi Rudra D,Trivedi Prabodh K,Chakrabarty Debasis,Tuli Rakesh

Abstract

Abstract Background Widespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood. Results Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters. Conclusion These findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference58 articles.

1. Nriagu JO, Neiborer E: Chromium in natural and human environments. 1988, New York: Wiley

2. Katz SA, Salem H: The biological and environmental chemistry of chromium. 1994, New York: VHC Publishers

3. Shanker AK, Djanaguiraman M, Venkateswarlu B: Chromium interactions in plants: current status and future strategies. Metallomics. 2009, 1: 375-383. 10.1039/b904571f.

4. Lin HT, Wong SS, Li GC: Heavy metal content of rice and Shellfish in Taiwan. J Food and Drug Analysis. 2004, 12: 167-174.

5. Shanker AK, Cervantes C, Tavera H, Avudainayagam S: Chromium toxicity in plants. Enviorn Int. 2005, 31: 739-753. 10.1016/j.envint.2005.02.003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3