Author:
Müller Frank-Dietrich,Treuner-Lange Anke,Heider Johann,Huntley Stuart M,Higgs Penelope I
Abstract
Abstract
Background
Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities.
Results
Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate.
Conclusions
These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation.
Publisher
Springer Science and Business Media LLC
Reference88 articles.
1. Shimkets LJ, Brun YV: Prokaryotic Development: Strategies to Enhance Survival. Prokaryotic Development. Edited by: Brun YV, Shimkets LJ. 2000, Washington, DC: ASM Press, 1-7.
2. Piggot PJ, Hilbert DW: Sporulation of Bacillus subtilis. Curr Opin Microbiol. 2004, 7 (6): 579-586. 10.1016/j.mib.2004.10.001.
3. Henriques AO, Moran CP: Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol. 2007, 61: 555-588. 10.1146/annurev.micro.61.080706.093224.
4. Sudo SZ, Dworkin M: Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol. 1969, 98 (3): 883-887.
5. Rosenberg E, Keller KH, Dworkin M: Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol. 1977, 129 (2): 770-777.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献