Author:
Pemov Alexander,Park Caroline,Reilly Karlyne M,Stewart Douglas R
Abstract
Abstract
Background
Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells, however the intracellular mechanisms for this tumor-promoting effect are less clear. Most primary human NF1
+/- cells are a challenge to obtain, however lymphoblastoid cell lines (LCLs) have been collected from large NF1 kindreds. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and -unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B lymphocytes from age- and gender-matched Nf1
+/- and wild-type mice, and used gene set enrichment analysis (GSEA), Onto-Express, Pathway-Express and MetaCore tools to identify genes perturbed in NF1-haploinsufficiency.
Results
We observed moderate expression of NF1 in human LCLs and of Nf1 in CD19+ mouse B lymphocytes. Using the t test to evaluate individual transcripts, we observed modest expression differences in the transcriptome in NF1-haploinsufficient LCLs and Nf1-haploinsuffiicient mouse B lymphocytes. However, GSEA, Onto-Express, Pathway-Express and MetaCore analyses identified genes that control cell cycle, DNA replication and repair, transcription and translation, and immune response as the most perturbed in NF1-haploinsufficient conditions in both human and mouse.
Conclusions
Haploinsufficiency arises when loss of one allele of a gene is sufficient to give rise to disease. Haploinsufficiency has traditionally been viewed as a passive state. Our observations of perturbed, up-regulated cell cycle and DNA repair pathways may functionally contribute to NF1-haploinsufficiency as an "active state" that ultimately promotes the loss of the wild-type allele.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Knudson AG: Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985, 45 (4): 1437-1443.
2. Smilenov LB: Tumor development: haploinsufficiency and local network assembly. Cancer Lett. 2006, 240 (1): 17-28. 10.1016/j.canlet.2005.08.015.
3. Santarosa M, Ashworth A: Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta. 2004, 1654 (2): 105-122.
4. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF: Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002, 296 (5569): 920-922. 10.1126/science.1068452.
5. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y: Nf1-dependent tumors require a microenvironment containing Nf1 +/- - and c-kit-dependent bone marrow. Cell. 2008, 135 (3): 437-448. 10.1016/j.cell.2008.08.041.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献