Use of consensus sequences for the design of high density resequencing microarrays: the influenza virus paradigm

Author:

Leclercq India,Berthet Nicolas,Batéjat Christophe,Rousseaux Claudine,Dickinson Philip,Old Iain G,Kong Katherine,Kennedy Giulia C,Cole Stewart T,Manuguerra Jean-Claude

Abstract

Abstract Background A resequencing microarray called PathogenID v2.0 has been developed and used to explore various strategies of sequence selection for its design. The part dedicated to influenza viruses was based on consensus sequences specific for one gene generated from global alignments of a large number of influenza virus sequences available in databanks. Results For each HA (H1, H2, H3, H5, H7 and H9) and NA (N1, N2 and N7) molecular type chosen to be tested, 1 to 3 consensus sequences were computed and tiled on the microarray. A total of 12 influenza virus samples from different host origins (humans, pigs, horses and birds) and isolated over a period of about 50 years were used in this study. Influenza viruses were correctly identified, and in most cases with the accurate information of the time of their emergence. Conclusions PathogenID v2.0 microarray demonstrated its ability to type and subtype influenza viruses, often to the level of viral variants, with a minimum number of tiled sequences. This validated the strategy of using consensus sequences, which do not exist in nature, for our microarray design. The versatility, rapidity and high discriminatory power of the PathogenID v2.0 microarray could prove critical to detect and identify viral genome reassortment events resulting in a novel virus with epidemic or pandemic potential and therefore assist health authorities to make efficient decisions about patient treatment and outbreak management.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3