Author:
Zhou Yijun,Gao Fei,Liu Ran,Feng Jinchao,Li Hongjie
Abstract
Abstract
Background
De novo assembly of transcript sequences produced by next-generation sequencing technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Ammopiptanthus mongolicus, a super-xerophytic broadleaf evergreen wood, is an ecologically important foundation species in desert ecosystems and exhibits substantial drought tolerance in Mid-Asia desert. Root plays an important role in water absorption of plant. There are insufficient transcriptomic and genomic data in public databases for understanding of the molecular mechanism underlying the drought tolerance of A. mongolicus. Thus, high throughput transcriptome sequencing from A. mongolicus root is helpful to generate a large amount of transcript sequences for gene discovery and molecular marker development.
Results
A total of 672,002 sequencing reads were obtained from a 454 GS XLR70 Titanium pyrosequencer with a mean length of 279 bp. These reads were assembled into 29,056 unique sequences including 15,173 contigs and 13,883 singlets. In our assembled sequences, 1,827 potential simple sequence repeats (SSR) molecular markers were discovered. Based on sequence similarity with known plant proteins, the assembled sequences represent approximately 9,771 proteins in PlantGDB. Based on the Gene ontology (GO) analysis, hundreds of drought stress-related genes were found. We further analyzed the gene expression profiles of 27 putative genes involved in drought tolerance using quantitative real-time PCR (qRT-PCR) assay.
Conclusions
Our sequence collection represents a major transcriptomic resource for A. mongolicus, and the large number of genetic markers predicted should contribute to future research in Ammopiptanthus genus. The potential drought stress related transcripts identified in this study provide a good start for further investigation into the drought adaptation in Ammopiptanthus.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C: Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot. 2005, 95: 843-851. 10.1093/aob/mci089.
2. Yan S, Mu GJ, Xu YQ: Quaternary environmental evolution of the Lop Nur region, NW China. Acta Micropalaeontologica Sin. 2000, 17: 165-169.
3. Liu JQ, Qiu MX: Ecological, physiological and anatomical traits of Ammopiptanthus mongolicus grown in desert of China. Acta Bot Sin. 1982, 24: 568-573.
4. Chen GQ, Huang HW, Kang M, Ge XJ: Development and characterization of microsatellite markers for an endangered shrub, Ammopiptanthus mongolicus (Leguminosae) and cross-species amplification in Ammopiptanthus nanus. Conserv Genet. 2007, 8: 1495-1497. 10.1007/s10592-007-9306-2.
5. Jiang Y, Wei LB, Fei YB, Shu NH, Gao SQ: Purification and identification of antifreeze proteins in Ammopiptanthus mongolicus. Acta Bot Sin. 1999, 41: 967-971.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献