De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus

Author:

Zhou Yijun,Gao Fei,Liu Ran,Feng Jinchao,Li Hongjie

Abstract

Abstract Background De novo assembly of transcript sequences produced by next-generation sequencing technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Ammopiptanthus mongolicus, a super-xerophytic broadleaf evergreen wood, is an ecologically important foundation species in desert ecosystems and exhibits substantial drought tolerance in Mid-Asia desert. Root plays an important role in water absorption of plant. There are insufficient transcriptomic and genomic data in public databases for understanding of the molecular mechanism underlying the drought tolerance of A. mongolicus. Thus, high throughput transcriptome sequencing from A. mongolicus root is helpful to generate a large amount of transcript sequences for gene discovery and molecular marker development. Results A total of 672,002 sequencing reads were obtained from a 454 GS XLR70 Titanium pyrosequencer with a mean length of 279 bp. These reads were assembled into 29,056 unique sequences including 15,173 contigs and 13,883 singlets. In our assembled sequences, 1,827 potential simple sequence repeats (SSR) molecular markers were discovered. Based on sequence similarity with known plant proteins, the assembled sequences represent approximately 9,771 proteins in PlantGDB. Based on the Gene ontology (GO) analysis, hundreds of drought stress-related genes were found. We further analyzed the gene expression profiles of 27 putative genes involved in drought tolerance using quantitative real-time PCR (qRT-PCR) assay. Conclusions Our sequence collection represents a major transcriptomic resource for A. mongolicus, and the large number of genetic markers predicted should contribute to future research in Ammopiptanthus genus. The potential drought stress related transcripts identified in this study provide a good start for further investigation into the drought adaptation in Ammopiptanthus.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference56 articles.

1. Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C: Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot. 2005, 95: 843-851. 10.1093/aob/mci089.

2. Yan S, Mu GJ, Xu YQ: Quaternary environmental evolution of the Lop Nur region, NW China. Acta Micropalaeontologica Sin. 2000, 17: 165-169.

3. Liu JQ, Qiu MX: Ecological, physiological and anatomical traits of Ammopiptanthus mongolicus grown in desert of China. Acta Bot Sin. 1982, 24: 568-573.

4. Chen GQ, Huang HW, Kang M, Ge XJ: Development and characterization of microsatellite markers for an endangered shrub, Ammopiptanthus mongolicus (Leguminosae) and cross-species amplification in Ammopiptanthus nanus. Conserv Genet. 2007, 8: 1495-1497. 10.1007/s10592-007-9306-2.

5. Jiang Y, Wei LB, Fei YB, Shu NH, Gao SQ: Purification and identification of antifreeze proteins in Ammopiptanthus mongolicus. Acta Bot Sin. 1999, 41: 967-971.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3