A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila

Author:

Wang Li,Tu Zhidong,Sun Fengzhu

Abstract

Abstract Background The recently developed RNA interference (RNAi) technology has created an unprecedented opportunity which allows the function of individual genes in whole organisms or cell lines to be interrogated at genome-wide scale. However, multiple issues, such as off-target effects or low efficacies in knocking down certain genes, have produced RNAi screening results that are often noisy and that potentially yield both high rates of false positives and false negatives. Therefore, integrating RNAi screening results with other information, such as protein-protein interaction (PPI), may help to address these issues. Results By analyzing 24 genome-wide RNAi screens interrogating various biological processes in Drosophila, we found that RNAi positive hits were significantly more connected to each other when analyzed within a protein-protein interaction network, as opposed to random cases, for nearly all screens. Based on this finding, we developed a network-based approach to identify false positives (FPs) and false negatives (FNs) in these screening results. This approach relied on a scoring function, which we termed NePhe, to integrate information obtained from both PPI network and RNAi screening results. Using a novel rank-based test, we compared the performance of different NePhe scoring functions and found that diffusion kernel-based methods generally outperformed others, such as direct neighbor-based methods. Using two genome-wide RNAi screens as examples, we validated our approach extensively from multiple aspects. We prioritized hits in the original screens that were more likely to be reproduced by the validation screen and recovered potential FNs whose involvements in the biological process were suggested by previous knowledge and mutant phenotypes. Finally, we demonstrated that the NePhe scoring system helped to biologically interpret RNAi results at the module level. Conclusion By comprehensively analyzing multiple genome-wide RNAi screens, we conclude that network information can be effectively integrated with RNAi results to produce suggestive FPs and FNs, and to bring biological insight to the screening results.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3