Predicting adverse side effects of drugs

Author:

Huang Liang-Chin,Wu Xiaogang,Chen Jake Y

Abstract

Abstract Background Studies of toxicity and unintended side effects can lead to improved drug safety and efficacy. One promising form of study comes from molecular systems biology in the form of "systems pharmacology". Systems pharmacology combines data from clinical observation and molecular biology. This approach is new, however, and there are few examples of how it can practically predict adverse reactions (ADRs) from an experimental drug with acceptable accuracy. Results We have developed a new and practical computational framework to accurately predict ADRs of trial drugs. We combine clinical observation data with drug target data, protein-protein interaction (PPI) networks, and gene ontology (GO) annotations. We use cardiotoxicity, one of the major causes for drug withdrawals, as a case study to demonstrate the power of the framework. Our results show that an in silico model built on this framework can achieve a satisfactory cardiotoxicity ADR prediction performance (median AUC = 0.771, Accuracy = 0.675, Sensitivity = 0.632, and Specificity = 0.789). Our results also demonstrate the significance of incorporating prior knowledge, including gene networks and gene annotations, to improve future ADR assessments. Conclusions Biomolecular network and gene annotation information can significantly improve the predictive accuracy of ADR of drugs under development. The use of PPI networks can increase prediction specificity and the use of GO annotations can increase prediction sensitivity. Using cardiotoxicity as an example, we are able to further identify cardiotoxicity-related proteins among drug target expanding PPI networks. The systems pharmacology approach that we developed in this study can be generally applicable to all future developmental drug ADR assessments and predictions.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3