Integrative mapping analysis of chicken microchromosome 16 organization

Author:

Solinhac Romain,Leroux Sophie,Galkina Svetlana,Chazara Olympe,Feve Katia,Vignoles Florence,Morisson Mireille,Derjusheva Svetlana,Bed'hom Bertrand,Vignal Alain,Fillon Valérie,Pitel Frédérique

Abstract

Abstract Background The chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16), particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci) mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent MHC complexes B and Y. In addition, GGA16 carries the ribosomal RNA (rRNA) genes cluster, also known as the NOR (nucleolus organizer region). The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers. Results We developed 79 STS (Sequence Tagged Site) markers to build a physical RH (radiation hybrid) map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome) library with markers for the MHC-B, MHC-Y and rRNA complexes. Selected clones were used to perform high resolution FISH (Fluorescent In Situ Hybridization) mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two MHC complexes. Conclusions The three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two MHC complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to be studied in more detail.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference60 articles.

1. Ladjali-Mohammedi K, Bitgood JJ, Tixier-Boichard M, Ponce De Leon FA: International system for standardized avian karyotypes (ISSAK): standardized banded karyotypes of the domestic fowl (Gallus domesticus). Cytogenet Cell Genet. 1999, 86: 271-276. 10.1159/000015318.

2. Bloom SE, Delany ME, Muscarella DE: Constant and variable features of the avian chromosomes. Manipulation of the Avian Genome. Edited by: RJ Etches AG. Guelph. 1993, Canada: CRC press, 39-59.

3. Pichugin AM, Galkina SA, Potekhin AA, Punina EO, Rautian MS, Rodionov AV: [Determination of the minimum size of Gallus gallus domesticus chicken microchromosome by a pulse electrophoresis method]. Genetika. 2001, 37: 657-660.

4. ICGSC, Consortium) ICGS: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.

5. Ensembl Genome Browser. [http://www.ensembl.org/index.html]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3