Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies

Author:

Harwich Michael D,Alves Joao M,Buck Gregory A,Strauss Jerome F,Patterson Jennifer L,Oki Aminat T,Girerd Philippe H,Jefferson Kimberly K

Abstract

Abstract Background Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder. It is associated with risk for preterm birth and HIV infection. The etiology of the condition has been debated for nearly half a century and the lack of knowledge about its cause and progression has stymied efforts to improve therapy and prevention. Gardnerella vaginalis was originally identified as the causative agent, but subsequent findings that it is commonly isolated from seemingly healthy women cast doubt on this claim. Recent studies shedding light on the virulence properties of G. vaginalis, however, have drawn the species back into the spotlight. Results In this study, we sequenced the genomes of a strain of G. vaginalis from a healthy woman, and one from a woman with bacterial vaginosis. Comparative analysis of the genomes revealed significant divergence and in vitro studies indicated disparities in the virulence potential of the two strains. The commensal isolate exhibited reduced cytotoxicity and yet the cytolysin proteins encoded by the two strains were nearly identical, differing at a single amino acid, and were transcribed at similar levels. The BV-associated strain encoded a different variant of a biofilm associated protein gene and demonstrated greater adherence, aggregation, and biofilm formation. Using filters with different pore sizes, we found that direct contact between the bacteria and epithelial cells is required for cytotoxicity. Conclusions The results indicated that contact is required for cytotoxicity and suggested that reduced cytotoxicity in the commensal isolate could be due to impaired adherence. This study outlines two distinct genotypic variants of G. vaginalis, one apparently commensal and one pathogenic, and presents evidence for disparate virulence potentials.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference51 articles.

1. Leopold S: Heretofore undescribed organism isolated from the genitourinary system. U S Armed Forces Med J. 1953, 4 (2): 263-266.

2. Gardner HL, Dukes CD: New etiologic agent in nonspecific bacterial vaginitis. Science. 1954, 120 (3125): 853-10.1126/science.120.3125.853.

3. Gardner HL, Dukes CD: Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified non-specific vaginitis. Am J Obstet Gynecol. 1955, 69 (5): 962-976.

4. Greenwood JR, Pickett MJ: Salient features of Haemophilus vaginalis. J Clin Microbiol. 1979, 9 (2): 200-204.

5. Piot P, van Dyck E, Goodfellow M, Falkow S: A taxonomic study of Gardnerella vaginalis (Haemophilus vaginalis) Gardner and Dukes 1955. J Gen Microbiol. 1980, 119 (2): 373-396.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3