Author:
Abasht Behnam,Sandford Erin,Arango Jesus,Settar Petek,Fulton Janet E,O'Sullivan Neil P,Hassen Abebe,Habier David,Fernando Rohan L,Dekkers Jack CM,Lamont Susan J
Abstract
Abstract
Background
The genome sequence and a high-density SNP map are now available for the chicken and can be used to identify genetic markers for use in marker-assisted selection (MAS). Effective MAS requires high linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), and sustained marker-QTL LD over generations. This study used data from a 3,000 SNP panel to assess the level and consistency of LD between single nucleotide polymorphisms (SNPs) over consecutive years in two egg-layer chicken lines, and analyzed one line by two methods (SNP-wise association and genome-wise Bayesian analysis) to identify markers associated with egg-quality and egg-production phenotypes.
Results
The LD between markers pairs was high at short distances (r2 > 0.2 at < 2 Mb) and remained high after one generation (correlations of 0.80 to 0.92 at < 5 Mb) in both lines. Single- and 3-SNP regression analyses using a mixed model with SNP as fixed effect resulted in 159 and 76 significant tests (P < 0.01), respectively, across 12 traits. A Bayesian analysis called BayesB, that fits all SNPs simultaneously as random effects and uses model averaging procedures, identified 33 SNPs that were included in the model >20% of the time (φ > 0.2) and an additional ten 3-SNP windows that had a sum of φ greater than 0.35. Generally, SNPs included in the Bayesian model also had a small P-value in the 1-SNP analyses.
Conclusion
High LD correlations between markers at short distances across two generations indicate that such markers will retain high LD with linked QTL and be effective for MAS. The different association analysis methods used provided consistent results. Multiple single SNPs and 3-SNP windows were significantly associated with egg-related traits, providing genomic positions of QTL that can be useful for both MAS and to identify causal mutations.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Fernando RL, Totir LR: Incorporating Molecular Information in Breeding Programs: Methodology. Poultry Genetics, Breeding and Biotechnology. Edited by: Muir WM, Aggrey SE. 2004, Cambridge, MA: CABI Publishing, 537-548.
2. Lamont SJ, Lakshmanan N, Plotsky Y, Kaiser MG, Kuhn M, Arthur JA, Beck NJ, O'Sullivan NP: Genetic markers linked to quantitative traits in poultry. Anim Genet. 1996, 27 (1): 1-8.
3. Soller M, Weigend S, Romanov MN, Dekkers JC, Lamont SJ: Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poult Sci. 2006, 85 (12): 2061-2078.
4. Abasht B, Dekkers JC, Lamont SJ: Review of quantitative trait loci identified in the chicken. Poult Sci. 2006, 85 (12): 2079-2096.
5. Gianola D, Perez-Enciso M, Toro MA: On marker-assisted prediction of genetic value: beyond the ridge. Genetics. 2003, 163 (1): 347-365.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献