Operon information improves gene expression estimation for cDNA microarrays

Author:

Xiao Guanghua,Martinez-Vaz Betsy,Pan Wei,Khodursky Arkady B

Abstract

Abstract Background In prokaryotic genomes, genes are organized in operons, and the genes within an operon tend to have similar levels of expression. Because of co-transcription of genes within an operon, borrowing information from other genes within the same operon can improve the estimation of relative transcript levels; the estimation of relative levels of transcript abundances is one of the most challenging tasks in experimental genomics due to the high noise level in microarray data. Therefore, techniques that can improve such estimations, and moreover are based on sound biological premises, are expected to benefit the field of microarray data analysis Results In this paper, we propose a hierarchical Bayesian model, which relies on borrowing information from other genes within the same operon, to improve the estimation of gene expression levels and, hence, the detection of differentially expressed genes. The simulation studies and the analysis of experiential data demonstrated that the proposed method outperformed other techniques that are routinely used to estimate transcript levels and detect differentially expressed genes, including the sample mean and SAM t statistics. The improvement became more significant as the noise level in microarray data increases. Conclusion By borrowing information about transcriptional activity of genes within classified operons, we improved the estimation of gene expression levels and the detection of differentially expressed genes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3