Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling

Author:

Ehlting Jürgen,Chowrira Sunita G,Mattheus Nathalie,Aeschliman Dana S,Arimura Gen-Ichiro,Bohlmann Jörg

Abstract

Abstract Background Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary) metabolism as well as genes involved in plant-insect defence signalling. Results Using a 70-mer oligonulceotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella) larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881) array elements (including 2,671 genes with AGI annotations) that were differentially expressed (>2-fold; p[t-test] < 0.05) of which 1,686 also changed more than twofold in expression between at least two time points of the time course with p(ANOVA) < 0.05. While the majority of these transcripts were up-regulated within 8 h upon onset of insect feeding relative to untreated controls, cluster analysis identified several distinct temporal patterns of transcriptome changes. Many of the DBM-induced genes fall into ontology groups annotated as stress response, secondary metabolism and signalling. Among DBM-induced genes associated with plant signal molecules or phytohormones, genes associated with octadecanoid signalling were clearly overrepresented. We identified a substantial number of differentially expressed genes associated with signal transduction in response to DBM feeding, and we compared there expression profiles with those of previously reported transcriptome responses induced by other insect herbivores, specifically Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae. Conclusion Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3