Causal inference of regulator-target pairs by gene mapping of expression phenotypes

Author:

Kulp David C,Jagalur Manjunatha

Abstract

Abstract Background Correlations between polymorphic markers and observed phenotypes provide the basis for mapping traits in quantitative genetics. When the phenotype is gene expression, then loci involved in regulatory control can theoretically be implicated. Recent efforts to construct gene regulatory networks from genotype and gene expression data have shown that biologically relevant networks can be achieved from an integrative approach. In this paper, we consider the problem of identifying individual pairs of genes in a direct or indirect, causal, trans-acting relationship. Results Inspired by epistatic models of multi-locus quantitative trait (QTL) mapping, we propose a unified model of expression and genotype to identify quantitative trait genes (QTG) by extending the conventional linear model to include both genotype and expression of regulator genes and their interactions. The model provides mapping of specific genes in contrast to standard linkage approaches that implicate large QTL intervals typically containing tens of genes. In simulations, we found that the method can often detect weak trans-acting regulators amid the background noise of thousands of traits and is robust to transcription models containing multiple regulator genes. We reanalyze several pleiotropic loci derived from a large set of yeast matings and identify a likely alternative regulator not previously published. However, we also found that many regulators can not be so easily mapped due to the presence of cis-acting QTLs on the regulators, which induce close linkage among small neighborhoods of genes. QTG mapped regulator-target pairs linked to ARN1 were combined to form a regulatory module, which we observed to be highly enriched in iron homeostasis related genes and contained several causally directed links that had not been identified in other automatic reconstructions of that regulatory module. Finally, we also confirm the surprising, previously published results that regulators controlling gene expression are not enriched for transcription factors, but we do show that our more precise mapping model reveals functional enrichment for several other biological processes related to the regulation of the cell. Conclusion By incorporating interacting expression and genotype, our QTG mapping method can identify specific regulator genes in contrast to standard QTL interval mapping. We have shown that the method can recover biologically significant regulator-target pairs and the approach leads to a general framework for inducing a regulatory module network topology of directed and undirected edges that can be used to identify leads in pathway analysis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3