Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows

Author:

Günther Juliane,Petzl Wolfram,Zerbe Holm,Schuberth Hans-Joachim,Koczan Dirk,Goetze Leopold,Seyfert Hans-Martin

Abstract

Abstract Background Udder infections with environmental pathogens like Escherichia coli are a serious problem for the dairy industry. Reduction of incidence and severity of mastitis is desirable and mild priming of the immune system either through vaccination or with low doses of immune stimulants such as lipopolysaccharide LPS was previously found to dampen detrimental effects of a subsequent infection. Monocytes/macrophages are known to develop tolerance towards the endotoxin LPS (endotoxin tolerance, ET) as adaptation strategy to prevent exuberant inflammation. We have recently observed that infusion of 1 μg of LPS into the quarter of an udder effectively protected for several days against an experimentally elicited mastitis. We have modelled this process in primary cultures of mammary epithelial cells (MEC) from the cow. MEC are by far the most abundant cells in the healthy udder coming into contact with invading pathogens and little is known about their role in establishing ET. Results We primed primary MEC cultures for 12 h with LPS (100 ng/ml) and stimulated three cultures either 12 h or 42 h later with 107/ml particles of heat inactivated E. coli bacteria for six hours. Priming-related alterations in the global transcriptome of those cells were quantified with Affymetrix microarrays. LPS priming alone caused differential expression of 40 genes and mediated significantly different response to a subsequent E. coli challenge of 226 genes. Expression of 38 genes was enhanced while that of 188 was decreased. Higher expressed were anti-microbial factors (β-defensin LAP, SLPI), cell and tissue protecting factors (DAF, MUC1, TGM1, TGM3) as well as mediators of the sentinel function of MEC (CCL5, CXCL8). Dampened was the expression of potentially harmful pro-inflammatory master cytokines (IL1B, IL6, TNF-α) and immune effectors (NOS2, matrix metalloproteases). Functional network analysis highlighted the reduced expression of IL1B and of IRF7 as key to this modulation. Conclusion LPS-primed MEC are fitter to repel pathogens and better protected against misguided attacks of the immune response. Attenuated is the exuberant expression of factors potentially promoting immunopathological processes. MEC therefore recapitulate many aspects of ET known so far from professional immune cells.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3