Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae

Author:

Arvas Mikko,Pakula Tiina,Lanthaler Karin,Saloheimo Markku,Valkonen Mari,Suortti Tapani,Robson Geoff,Penttilä Merja

Abstract

Abstract Background Secretion stress is caused by compromised folding, modification or transport of proteins in the secretory pathway. In fungi, induction of genes in response to secretion stress is mediated mainly by the unfolded protein response (UPR) pathway. This study aims at uncovering transcriptional responses occurring in the filamentous fungi Trichoderma reesei exposed to secretion stress and comparing these to those found in the yeast Saccharomyces cerevisiae. Results Chemostat cultures of T. reesei expressing human tissue plasminogen activator (tPA) and batch bioreactor cultures treated with dithiothreitol (DTT) to prevent correct protein folding were analysed with cDNA subtraction and cDNA-amplified fragment length polymorphism (AFLP) experiments. ESTs corresponding to 457 unique genes putatively induced under secretion stress were isolated and the expression pattern of 60 genes was confirmed by Northern analysis. Expression of these genes was also studied in a strain over-expressing inositol-requiring enzyme 1 (IREI) protein, a sensor for the UPR pathway. To compare the data with that of S. cerevisiae, published transcriptome profiling data on various stress responses in S. cerevisiae was reanalysed. The genes up-regulated in response to secretion stress included a large number of secretion related genes in both organisms. In addition, analysis of T. reesei revealed up regulation of the cpc1 transcription factor gene and nucleosomal genes. The induction of the cpcA and histone gene H4 were shown to be induced also in cultures of Aspergillus nidulans treated with DTT. Conclusion Analysis of the genes induced under secretion stress has revealed novel features in the stress response in T. reesei and in filamentous fungi. We have demonstrated that in addition to the previously rather well characterised induction of genes for many ER proteins or secretion related proteins also other types of responses exist.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3