Author:
Cook Rebekah,Hennell James R,Lee Samiuela,Khoo Cheang S,Carles Maria C,Higgins Vincent J,Govindaraghavan Suresh,Sucher Nikolaus J
Abstract
Abstract
Background
Pattern-oriented chemical profiling is increasingly being used to characterize the phytochemical composition of herbal medicines for quality control purposes. Ideally, a fingerprint of the biological effects should complement the chemical fingerprint. For ethical and practical reasons it is not possible to test each herbal extract in laboratory animals or humans. What is needed is a test system consisting of an organism with relevant biology and complexity that can serve as a surrogate in vitro system. The purpose of this study was to test the hypothesis that the Saccharomyces cerevisiae transcriptome might be used as an indicator of phytochemical variation of closely-related yet distinctly different extracts prepared from a single species of a phytogeographically widely distributed medicinal plant. We combined phytochemical profiling using chromatographic methods (HPTLC, HPLC-PDA-MS/MS) and gene expression studies using Affymetrix Yeast 2.0 gene chip with principal component analysis and k-nearest neighbor clustering analysis to test this hypothesis using extracts prepared from the phytogeographically widely distributed medicinal plant Equisetum arvense as a test case.
Results
We found that the Equisetum arvense extracts exhibited qualitative and quantitative differences in their phytochemical composition grouped along their phytogeographical origin. Exposure of yeast to the extracts led to changes in gene expression that reflected both the similarities and differences in the phytochemical composition of the extracts. The Equisetum arvense extracts elicited changes in the expression of genes involved in mRNA translation, drug transport, metabolism of energy reserves, phospholipid metabolism, and the cellular stress response.
Conclusions
Our data show that functional genomics in S. cerevisiae may be developed as a sensitive bioassay for the scientific investigation of the interplay between phytochemical composition and transcriptional effects of complex mixtures of chemical compounds. S. cerevisiae transcriptomics may also be developed for testing of mixtures of conventional drugs (“polypills”) to discover novel antagonistic or synergistic effects of those drug combinations.
Publisher
Springer Science and Business Media LLC
Reference110 articles.
1. Ball P: The devil's doctor : Paracelsus and the world of Renaissance magic and science, 1st American edn. 2006, New York: Farrar, Straus and Giroux
2. Hamburger M: Hostettmann K: 7. Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry. 1991, 30 (12): 3864-3874.
3. Kinghorn AD: Biologically active compounds from plants with reputed medicinal and sweetening properties. J Natural Products. 1987, 50 (6): 1009-1024. 10.1021/np50054a002.
4. Lowe JA, Jones P, Wilson DM: Network biology as a new approach to drug discovery. Current opinion in drug discovery & development. 2010, 13 (5): 524-526.
5. Newman DJ, Cragg GM, Snader KM: The influence of natural products upon drug discovery. Nat Prod Rep. 2000, 17 (3): 215-234. 10.1039/a902202c.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献