Author:
Amiruddin Nadzirah,Lee Xin-Wei,Blake Damer P,Suzuki Yutaka,Tay Yea-Ling,Lim Lik-Sin,Tomley Fiona M,Watanabe Junichi,Sugimoto Chihiro,Wan Kiew-Lian
Abstract
Abstract
Background
Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.
Results
More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.
Conclusions
This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Shirley MW, Smith AL, Tomley FM: The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol. 2005, 60: 285-330.
2. Chapman HD, Shirley MW: The Houghton strain of Eimeria tenella: A review of the type strain selected for genome sequencing. Avian Pathol. 2003, 32: 115-127. 10.1080/0307945021000071588.
3. McDonald V, Shirley MW: The endogenous development of virulent strains and attenuated precocious lines of Eimeria tenella and E. necatrix. J Parasitol. 1987, 73: 993-997. 10.2307/3282523.
4. Rose M, Hesketh P: Immunity to coccidiosis: stages of the life-cycle of Eimeria maxima which induce, and are affected by, the response of the host. Parasitol. 1976, 73: 25-37. 10.1017/S0031182000051295.
5. Shirley MW: Eimeria species and strains of chickens. Guidelines on techniques in coccidiosis research. Edited by: Eckert J, Braun R, Shirley MW, Coudert P. 1995, Luxemborg, European Commission, 1-24.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献