Immunohistochemistry is highly sensitive and specific for detection of BRAF V600E mutation in pleomorphic xanthoastrocytoma

Author:

Ida Cristiane M,Vrana Julie A,Rodriguez Fausto J,Jentoft Mark E,Caron Alissa A,Jenkins Sarah M,Giannini Caterina

Abstract

Abstract Background High frequencies of the BRAF V600E mutation have been reported in pleomorphic xanthoastrocytoma (PXA). Recently, a BRAF V600E mutation-specific antibody has been developed and validated. We evaluated the immunohistochemical (IHC) detection of BRAF V600E mutation in PXA by comparing to gold standard molecular analysis and investigating the interobserver variability of the IHC scoring. We performed BRAF V600E IHC in 46 cases, of which 37 (80%) cases had sufficient tumor tissue for molecular analysis. IHC detection was performed using monoclonal mouse antibody VE1 (Spring Bioscience). IHC slides were scored independently by four reviewers blind to molecular data, including a primary (gold standard) and three additional reviewers. BRAF V600E mutation status was assessed by allele-specific polymerase chain reaction (PCR) with fragment analysis. Results All 46 cases showed interpretable BRAF V600E IHC results: 27 (59%) were positive (strong cytoplasmic staining), 19 (41%) were negative (6 of these cases with focal/diffuse weak cytoplasmic staining, interpreted as nonspecific by the primary reviewer). By molecular analysis, all 37 cases that could be tested had evaluable results: 22 (59%) cases were positive for BRAF V600E mutation and were scored as “IHC-positive”, and 15 (41%) were negative (including 11 cases scored as “IHC-negative” and 4 cases scored as negative with minimal nonspecific staining). IHC detection of BRAF V600E mutant protein was congruent in all 37 cases that were successfully evaluated by molecular testing (sensitivity and specificity of 100%). Agreement for IHC scoring among the 4 reviewers was almost perfect (kappa 0.92) when cases were scored as “positive/negative” and substantial (kappa 0.78) when minimal nonspecific staining was taken into account. Conclusions We conclude that detection of BRAF V600E mutation by immunohistochemistry is highly sensitive and specific. BRAF V600E IHC interpretation is usually straightforward, but awareness of possible nonspecific staining is necessary and training is recommended. It is a practical rapid method that may avoid the need of labor-intensive molecular testing and may be most valuable in small biopsies unsuitable for molecular analysis.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3