VEViD: Vision Enhancement via Virtual diffraction and coherent Detection

Author:

Jalali BahramORCID,MacPhee Callen

Abstract

AbstractThe history of computing started with analog computers consisting of physical devices performing specialized functions such as predicting the position of astronomical bodies and the trajectory of cannon balls. In modern times, this idea has been extended, for example, to ultrafast nonlinear optics serving as a surrogate analog computer to probe the behavior of complex phenomena such as rogue waves. Here we discuss a new paradigm where physical phenomena coded as an algorithm perform computational imaging tasks. Specifically, diffraction followed by coherent detection becomes an image enhancement tool. Vision Enhancement via Virtual diffraction and coherent Detection (VEViD) reimagines a digital image as a spatially varying metaphoric “lightfield” and then subjects the field to the physical processes akin to diffraction and coherent detection. The term “Virtual” captures the deviation from the physical world. The light field is pixelated and the propagation imparts a phase with dependence on frequency which is different from the monotonically-increasing behavior of physical diffraction. Temporal frequencies exist in three bands corresponding to the RGB color channels of a digital image. The phase of the output, not the intensity, represents the output image. VEViD is a high-performance low-light-level and color enhancement tool that emerges from this paradigm. The algorithm is extremely fast, interpretable, and reduces to a compact and intuitively-appealing mathematical expression. We demonstrate image enhancement of 4k video at over 200 frames per second and show the utility of this physical algorithm in improving the accuracy of object detection in low-light conditions by neural networks. The application of VEViD to color enhancement is also demonstrated.

Funder

Parker Center for Cancer Immunotherapy

Office of Naval Research Global

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. https://en.wikipedia.org/wiki/Antikythera_mechanism

2. Donald Routledge Hill, Mechanical Engineering in the Medieval Near East, Scientific American, 1991, pp. 64–69 (cf. Donald Routledge Hill, Mechanical Engineering)

3. D.R. Solli, B. Jalali, Analog optical computing. Nat. Photonics 9(11), 704–706 (2015)

4. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

5. J.M. Dudley, G. Genty, A. Mussot, A. Chabchoub, F. Dias, Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1(11), 675–689 (2019)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3