Lead halide perovskite sensitized WSe2 photodiodes with ultrahigh open circuit voltages

Author:

Lee Sung-Joon,Cheng Hung-Chieh,Wang Yiliu,Zhou Boxuan,Li Dehui,Wang Gongming,Liu Yuan,Guo Jian,Wu Hao,Kang Dae Joon,Huang Yu,Duan XiangfengORCID

Abstract

AbstractTwo-dimensional semiconductors (2DSCs) have attracted considerable interests for optoelectronic devices, but are often plagued by the difficulties in tailoring the charge doping type and poor optical absorption due to their atomically thin geometry. Herein, we report a methylammonium lead iodide perovskite (CH3NH3PbI3)/2DSC heterojunction device, in which the electric-field controllable ion migration in the perovskite layer is exploited to induce reversible electron- and hole-doping effects in the underlying monolayer tungsten diselenide (WSe2) to form a programmable p–n photodiode. At the same time, the CH3NH3PbI3 layer functions as a highly efficient sensitization layer to greatly boost the optical absorption and external quantum efficiency (EQE) of the resulting photodiode. By asymmetrically poling the perovskite layer, gold-contacted CH3NH3PbI3/WSe2 devices show a switchable open circuit voltage up to 0.78 V, along with a high EQE of 84.3%. The integration of tunable graphene-contacts further improves the photodiode performance to achieve a highest open circuit voltage of 1.08 V and a maximum EQE of 91.3%, greatly exceeding those achieved previously in 2DSC lateral diodes. Our studies establish a non-invasive approach to switch optoelectronic functions and open up a new avenue toward high-performance reconfigurable optoelectronic devices from 2DSCs.

Funder

Office of Naval Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3