Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID)

Author:

Wu ZilingORCID,Kang Iksung,Yao Yudong,Jiang Yi,Deng Junjing,Klug Jeffrey,Vogt Stefan,Barbastathis George

Abstract

AbstractX-ray ptychographic tomography is a nondestructive method for three dimensional (3D) imaging with nanometer-sized resolvable features. The size of the volume that can be imaged is almost arbitrary, limited only by the penetration depth and the available scanning time. Here we present a method that rapidly accelerates the imaging operation over a given volume through acquiring a limited set of data via large angular reduction and compensating for the resulting ill-posedness through deeply learned priors. The proposed 3D reconstruction method “RAPID” relies initially on a subset of the object measured with the nominal number of required illumination angles and treats the reconstructions from the conventional two-step approach as ground truth. It is then trained to reproduce equal fidelity from much fewer angles. After training, it performs with similar fidelity on the hitherto unexamined portions of the object, previously not shown during training, with a limited set of acquisitions. In our experimental demonstration, the nominal number of angles was 349 and the reduced number of angles was 21, resulting in a $$\times 140$$ × 140 aggregate speedup over a volume of $$4.48\times 93.18\times 3.92\, \upmu \text {m}^3$$ 4.48 × 93.18 × 3.92 μ m 3 and with $$(14\,\text {nm})^3$$ ( 14 nm ) 3 feature size, i.e. $$\sim 10^8$$ 10 8 voxels. RAPID’s key distinguishing feature over earlier attempts is the incorporation of atrous spatial pyramid pooling modules into the deep neural network framework in an anisotropic way. We found that adjusting the atrous rate improves reconstruction fidelity because it expands the convolutional kernels’ range to match the physics of multi-slice ptychography without significantly increasing the number of parameters.

Funder

Intelligence Advanced Research Projects Activity

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3