A new method for quantitative assessment of hand muscle volume and fat in magnetic resonance images

Author:

Friedberger AndreasORCID,Figueiredo Camille,Bäuerle Tobias,Schett Georg,Engelke Klaus

Abstract

Abstract Background Rheumatoid arthritis (RA) is characterized by systemic inflammation and bone and muscle loss. Recent research showed that obesity facilitates inflammation, but it is unknown if obesity also increases the risk or severity of RA. Further research requires an accurate quantification of muscle volume and fat content. Methods The aim was to develop a reproducible (semi) automated method for hand muscle segmentation and quantification of hand muscle fat content and to reduce the time consuming efforts of manual segmentation. T1 weighted scans were used for muscle segmentation based on a random forest classifier. Optimal segmentation parameters were determined by cross validation with 30 manually segmented hand datasets (gold standard). An operator reviewed the automatically created segmentation and applied corrections if necessary. For fat quantification, the segmentation masks were automatically transferred to MRI Dixon sequences by rigid registration. In total 76 datasets from RA patients were analyzed. Accuracy was validated against the manual gold standard segmentations. Results Average analysis time per dataset was 10 min, more than 10 times faster compared to manual outlining. All 76 datasets could be analyzed and were accurate as judged by a clinical expert. 69 datasets needed minor manual segmentation corrections. Segmentation accuracy compared to the gold standard (Dice ratio 0.98 ± 0.04, average surface distance 0.04 ± 0.10 mm) and reanalysis precision were excellent. Intra- and inter-operator precision errors were below 0.3% (muscle) and 0.7% (fat). Average Hausdorff distances were higher (1.09 mm), but high values originated from a shift of the analysis VOI by one voxel in scan direction. Conclusions We presented a novel semi-automated method for quantitative assessment of hand muscles with excellent accuracy and operator precision, which highly reduced a traditional manual segmentation effort. This method may greatly facilitate further MRI image based muscle research of the hands.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Rheumatology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3