Mechanical, chemical, structural analysis and comparative release of PDGF-AA from L-PRF, A-PRF and T-PRF - an in vitro study

Author:

Ravi Shravanthy,Santhanakrishnan MuthukumarORCID

Abstract

Abstract Background Platelet concentrates have been popularly used in regenerative periodontal therapy as they are autologous in origin and they provide a supernatural concentration of platelets, growth factors and leukocytes. The release profile of various growth factors is considered important during the various phases of wound healing with the most important being the inflammatory phase where the release of the growth factors help in recruitment of cells and in collagen production. With the more recent modifications of PRF namely A-PRF and T-PRF, the mechanical and chemical degradation properties have also improved. The aim of the present study was to correlate the release profile of PDGF-AA from various forms of platelet concentrates (L-PRF, A-PRF, T-PRF) based on their mechanical and chemical properties. Methods Blood samples were drawn from 2 male and 3 female systemically healthy patients between 20 and 25 years of age who were about to undergo periodontal regeneration for PRF preparation. The blood sample was immediately centrifuged using a table top centrifuge (Remi R4C) at 1060 rpm (208 x g) for 14 min for A-PRF preparation, 1960 rpm (708 x g) for 12 min for L-PRF preparation and 1960 rpm (708 x g) for 12 min in titanium tubes for T-PRF preparation. Tensile test was performed using universal testing machine. The in vitro degradation test of the prepared PRF membranes were conducted by placing the PRF membrane in 10 ml of pH 7.4 PBS on an orbital shaker set at 50 rpm. SEM evaluation of the PRF membrane was done under both low and high magnification. In order to determine the amount of released growth factor PDGF-AA at 15 min, 60 min, 8 h, 1 day, 3 days, and 10 days, samples were placed into a shaking incubator at 37 °C to allow for growth factor release into the culture media. Results On comparing the three PRF membranes, it was found that T-PRF contained the maximum tensile strength (404.61 ± 5.92 MPa) and modulus of elasticity (151.9 ± 6.92 MPa). Statistically significant differences between the three groups were found on comparing the groups for their mechanical properties. In the degradation test, it was found that the maximum amount of degradation was found in L-PRF (85.75%), followed by A-PRF (84.18%) and the least was found in T-PRF (82.27%). T-PRF released the highest amount of PDGF-AA (6060.4 pg/ml) at early time points when compared to A-PRF (5935.3 pg/ml). While T-PRF had rapid release of PDGF-AA, A-PRF had a sustained release of growth factors released at later time points. Conclusion Results from the present study indicate that A-PRF is the most favourable form of platelet concentrate in regenerative periodontal therapy as it has a sustained release of growth factors over time.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

Reference25 articles.

1. Newman MG, Takei H, Klokkevold PR, Carranza FA. Carranza’s Clinical Periodontology. 11th South Asia ed. New Delhi: Elsevier Health Sciences; 2011.

2. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 1997;17(1):11–25.

3. Schwartz Z, Carnes DL Jr, Pulliam R, Lohmann CH, Sylvia VL, Liu Y, et al. Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol. 2000;71(8):1287–96.

4. Kumar A, Mukhtar-Un-Nisar S, Zia A. Tissue engineering-the promise of regenerative dentistry. Biol Med. 2011;3:108–13.

5. Dabra S, Chhina K, Soni N, Bhatnagar R. Tissue engineering in periodontal regeneration: a brief review. Dent Res J (Isfahan). 2012;9(6):671–80.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3