Abstract
Abstract
Background
Biphasic calcium phosphate (BCP) is the most frequently used synthetic bone substitutes, which comprises a combination of hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP). Thanks to the recent advances in digital dentistry and three-dimensional (3D) printing technology, synthetic block bone substitutes can be customized to fit individual defect morphologies. The diameter of the pores can influence the rate of bone formation and material resorption. The aim of this study was to compare three-dimensionally printed biphasic calcium phosphate (BCP) block bone substitutes with different pore diameters (0.8-, 1.0-, and 1.2- mm) for use in the regeneration of rabbit calvarial defects.
Methods
Four circular defects were formed on the calvaria of ten rabbits. Each defect was randomly allocated to one of the following study groups: (i) control group, (ii) 0.8-mm group, (iii) 1.0-mm group, and (iv) 1.2-mm group. All specimens were postoperatively harvested at 2 and 8 weeks, and radiographic and histomorphometric analyses were performed on the samples.
Results
Histologically, the BCP blocks remained unresorbed up to 8 weeks, and new bone formation occurred within the porous structures of the blocks. After the short healing period of 2 weeks, histomorphometric analysis indicated that new bone formation was significantly greater in the BCP groups compared with the control (p < 0.05). However, there were no significant differences between the groups with different pore diameters (p > 0.05). At 8 weeks, only the 1.0-mm group (3.42 ± 0.48 mm2, mean ± standard deviation) presented a significantly larger area of new bone compared with the control (2.26 ± 0.59 mm2) (p < 0.05). Among the BCP groups, the 1.0- and 1.2-mm groups exhibited significantly larger areas of new bone compared with the 0.8-mm group (3.42 ± 0.48 and 3.04 ± 0.66 vs 1.60 ± 0.70 mm2, respectively).
Conclusions
Within the limitations of this study, the BCP block bone substitutes can be applied to bone defects for successful bone regeneration. Future studies should investigate more-challenging defect configurations prior to considering clinical applications.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献