Age- and sex-dependence of five major elements in the development of human scalp hair

Author:

Ha Byeong-Jo,Lee Ga Yun,Cho Il-Hoon,Park SangsooORCID

Abstract

Abstract Background Human scalp hair is composed of bio-synthesized protein that stores and excretes excess elements from the body. Thus, the concentration of major and trace elements in the hair may provide insight into both the physiology and health status of humans. Monitoring of health status by hair analysis is limited by the uncertainty surrounding natural changes in composition based on age and sex parameters. Methods A total of 322 hair samples from subjects aged 0–89 years were collected and analyzed to determine their sulfur, calcium, magnesium, zinc, and copper concentrations by inductively coupled plasma mass spectrometry. The age- and sex-dependence of the concentrations of these elements within scalp hair was evaluated. Age-dependence was analyzed by least squares fitting of the data from young people (up to 25 years old). Sex-dependence was evaluated by comparing the average element concentrations of males and females in each age groups. Results The concentration of mineral elements increased with age up to 25 years old. Calcium and magnesium contents were strongly affected by age, whereas the effects were weaker for zinc and copper. In participants over 20 years old, sex and the concentrations of calcium and magnesium were significantly associated. The concentrations of these elements were higher in most of the subgroups of adult women. The concentrations of sulfur, zinc, and copper were not significantly associated with age or sex. Conclusions The concentrations of major inorganic elements in scalp hair showed an increasing trend up to 25 years of age, and a strong sex dependence of calcium and magnesium concentrations in the subjects older than 20 years. More research is needed to understand the physiology of calcium and magnesium excretion though scalp hair.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3