Abstract
Abstract
Background
Human scalp hair is composed of bio-synthesized protein that stores and excretes excess elements from the body. Thus, the concentration of major and trace elements in the hair may provide insight into both the physiology and health status of humans. Monitoring of health status by hair analysis is limited by the uncertainty surrounding natural changes in composition based on age and sex parameters.
Methods
A total of 322 hair samples from subjects aged 0–89 years were collected and analyzed to determine their sulfur, calcium, magnesium, zinc, and copper concentrations by inductively coupled plasma mass spectrometry. The age- and sex-dependence of the concentrations of these elements within scalp hair was evaluated. Age-dependence was analyzed by least squares fitting of the data from young people (up to 25 years old). Sex-dependence was evaluated by comparing the average element concentrations of males and females in each age groups.
Results
The concentration of mineral elements increased with age up to 25 years old. Calcium and magnesium contents were strongly affected by age, whereas the effects were weaker for zinc and copper. In participants over 20 years old, sex and the concentrations of calcium and magnesium were significantly associated. The concentrations of these elements were higher in most of the subgroups of adult women. The concentrations of sulfur, zinc, and copper were not significantly associated with age or sex.
Conclusions
The concentrations of major inorganic elements in scalp hair showed an increasing trend up to 25 years of age, and a strong sex dependence of calcium and magnesium concentrations in the subjects older than 20 years. More research is needed to understand the physiology of calcium and magnesium excretion though scalp hair.
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Reference17 articles.
1. Verma A, Singh VK, Verma SK, Sharma A. Human hair: a biodegradable composite fiber–a review. Int J Waste Resour. 2016;6:2 https://doi.org/10.4172/2252-5211.1000206.
2. Popescu C, Höcker H. Hair - the most sophisticated biological composite material. Chem Soc Rev. 2007;36:1282–91.
3. Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab. 2015;12(1):18–21.
4. Miekeley N, de Fortes Carvalho LM, Porto da Silveira CL, et al. Elemental anomalies in hair as indicators of endocrinologic pathologies and deficiencies in calcium and bone metabolism. J Trace Elem Med Biol. 2001;15:46–55.
5. MacPherson A, Bacsó J. Relationship of hair calcium concentration to incidence of coronary heart disease. Sci Total Environ. 2000;255:11–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献