Abstract
Abstract
Background
Although the use of cardiac patches is still controversial, cardiac patch has the significance in the field of the tissue engineered cardiac regeneration because it overcomes several shortcomings of intra-myocardial injection by providing a template for cells to form a cohesive sheet. So far, fibrous scaffolds fabricated using electrospinning technique have been increasingly explored for preparation of cardiac patches. One of the problems with the use of electrospinning is that nanofibrous structures hardly allow the infiltration of cells for development of 3D tissue construct. In this respect, we have prepared novel bi-modal electrospun scaffolds as a feasible strategy to address the challenges in cardiac tissue engineering .
Methods
Nano/micro bimodal composite fibrous patch composed of collagen and poly (D, L-lactic-co-glycolic acid) (Col/PLGA) was fabricated using an independent nozzle control multi-electrospinning apparatus, and its feasibility as the stem cell laden cardiac patch was systemically investigated.
Results
Nano/micro bimodal distributions of Col/PLGA patches without beaded fibers were obtained in the range of the 4-6% collagen concentration. The poor mechanical properties of collagen and the hydrophobic property of PLGA were improved by co-electrospinning. In vitro experiments using bone marrow-derived mesenchymal stem cells (BMSCs) revealed that Col/PLGA showed improved cyto-compatibility and proliferation capacity compared to PLGA, and their extent increased with increase in collagen content. The results of tracing nanoparticle-labeled as well as GFP transfected BMSCs strongly support that Col/PLGA possesses the long-term stem cells retention capability, thereby allowing stem cells to directly function as myocardial and vascular endothelial cells or to secrete the recovery factors, which in turn leads to improved heart function proved by histological and echocardiographic findings.
Conclusion
Col/PLGA bimodal cardiac patch could significantly attenuate cardiac remodeling and fully recover the cardiac function, as a consequence of their potent long term stem cell engraftment capability.
Funder
Ministry of Knowledge Economy
Ministry of Trade, Industry and Energy
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献