Additively manufactured titanium scaffolds and osteointegration - meta-analyses and moderator-analyses of in vivo biomechanical testing

Author:

Cleemput SimonORCID,Huys Stijn E. F.,Cleymaet Robbert,Cools Wilfried,Mommaerts Maurice Y.

Abstract

Abstract Introduction Maximizing osteointegration potential of three-dimensionally-printed porous titanium (3DPPT) is an ongoing focus in biomaterial research. Many strategies are proposed and tested but there is no weighted comparison of results. Methods We systematically searched Pubmed and Embase to obtain two pools of 3DPPT studies that performed mechanical implant-removal testing in animal models and whose characteristics were sufficiently similar to compare the outcomes in meta-analyses (MAs). We expanded these MAs to multivariable meta-regressions (moderator analysis) to verify whether statistical models including reported scaffold features (e.g., “pore-size”, “porosity”, “type of unit cell”) or post-printing treatments (e.g., surface treatments, adding agents) could explain the observed differences in treatment effects (expressed as shear strength of bone-titanium interface). Results “Animal type” (species of animal in which the 3DPPT was implanted) and “type of post-treatment” (treatment performed after 3D printing) were moderators providing statistically significant models for differences in mechanical removal strength. An interaction model with covariables “pore-size” and “porosity” in a rabbit subgroup analysis (the most reported animal model) was also significant. Impact of other moderators (including “time” and “location of implant”) was not statistically significant. Discussion/conclusion Our findings suggest a stronger effect from porosity in a rat than in a sheep model. Additionally, adding a calcium-containing layer does not improve removal strength but the other post-treatments do. Our results provide overview and new insights, but little narrowing of existing value ranges. Consequent reporting of 3DPPT characteristics, standardized comparison, and expression of porosity in terms of surface roughness could help tackle these existing dilemmas. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3