Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering

Author:

Nguyen Thu-Trang,Hu Chih-Chien,Sakthivel Rajalakshmi,Nabilla Sasza Chyntara,Huang Yu-Wen,Yu Jiashing,Cheng Nai-Chen,Kuo Yi-Jie,Chung Ren-JeiORCID

Abstract

Abstract Background All types of movements involve the role of articular cartilage and bones. The presence of cartilage enables bones to move over one another smoothly. However, repetitive microtrauma and ischemia as well as genetic effects can cause an osteochondral lesion. Numerous treatment methods such as microfracture surgergy, autograft, and allograft, have been used, however, it possesses treatment challenges including prolonged recovery time after surgery and poses a financial burden on patients. Nowadays, various tissue engineering approaches have been developed to repair bone and osteochondral defects using biomaterial implants to induce the regeneration of stem cells.  Methods In this study, a collagen (Col)/γ-polyglutamate acid (PGA)/hydroxyapatite (HA) composite scaffold was fabricated using a 3D printing technique. A Col/γ-PGA/HA 2D membrane was also fabricated for comparison. The scaffolds (four layers) were designed with the size of 8 mm in diameter and 1.2 mm in thickness. The first layer was HA/γ-PGA and the second to fourth layers were Col/γ-PGA. In addition, a 2D membrane was constructed from hydroxyapatite/γ-PGA and collagen/γ-PGA with a ratio of 1:3. The biocompatibility property and degradation activity were investigated for both scaffold and membrane samples. Rat bone marrow mesenchymal stem cells (rBMSCs) and human adipose-derived stem cells (hADSCs) were cultured on the samples and were tested in-vitro to evaluate cell attachment, proliferation, and differentiation. In-vivo experiments were performed in the rat and nude mice models. Results In-vitro and in-vivo results show that the developed scaffold is of well biodegradation and biocompatible properties, and the Col-HA scaffold enhances the mechanical properties for osteochondrogenesis in both in-vitro and animal trials. Conclusions The composite would be a great biomaterial application for bone and osteochondral regeneration.

Funder

Ministry of Science and Technology, Taiwan

National Taipei University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3