Author:
Luo Yinyue,Xiao Menglin,Almaqrami Bushra sufyan,Kang Hong,Shao Zhengzhong,Chen Xin,Zhang Ying
Abstract
Abstract
Background
Osteochondral defects pose an enormous challenge without satisfactory repair strategy to date. In particular, the lateral integration of neo-cartilage into the surrounding native cartilage is a difficult and inadequately addressed problem determining tissue repair’s success.
Methods
Regenerated silk fibroin (RSF) based on small aperture scaffolds was prepared with n-butanol innovatively. Then, the rabbit knee chondrocytes and bone mesenchymal stem cells (BMSCs) were cultured on RSF scaffolds, and after induction of chondrogenic differentiation, cell-scaffold complexes strengthened by a 14 wt% RSF solution were prepared for in vivo experiments.
Results
A porous scaffold and an RSF sealant exhibiting biocompatibility and excellent adhesive properties are developed and confirmed to promote chondrocyte migration and differentiation. Thus, osteochondral repair and superior horizontal integration are achieved in vivo with this composite.
Conclusions
Overall, the new approach of marginal sealing around the RSF scaffolds exhibits preeminent repair results, confirming the ability of this novel graft to facilitate simultaneous regeneration of cartilage–subchondral bone.
Funder
the Relationship between Oral Health and Chronic Diseases of the Elderly
Key Disciplines of Preventive Dentistry
Youth Fund of the National Health Commission
the Aging Special Program of the National Health Commission
National Natural Science Foundation of China
Publisher
American Association for the Advancement of Science (AAAS)
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献