Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy

Author:

Li Tongyu,Shi Weiwei,Yao Jie,Hu Jingyun,Sun Qiong,Meng Jing,Wan Jian,Song Haihan,Wang HangxiangORCID

Abstract

Abstract Background Combinatorial systemic chemotherapy is a powerful treatment paradigm against cancer, but it is fraught with problems due to the emergence of chemoresistance and additive systemic toxicity. In addition, coadministration of individual drugs suffers from uncontrollable pharmacokinetics and biodistribution, resulting in suboptimal combination synergy. Methods Toward the goal of addressing these unmet medical issues, we describe a unique strategy to integrate multiple structurally disparate drugs into a self-assembling nanococktail platform. Conjugation of a polyunsaturated fatty acid (e.g., linoleic acid) with two chemotherapies generated prodrug entities that were miscible with tunable drug ratios for aqueous self-assembly. In vitro and in vivo assays were performed to investigate the mechanism of combinatorial nanococktails in mitigating chemoresistance and the efficacy of nanotherapy. Results The coassembled nanoparticle cocktails were feasibly fabricated and further refined with an amphiphilic matrix to form a systemically injectable and PEGylated nanomedicine with minimal excipients. The drug ratio incorporated into the nanococktails was optimized and carefully examined in lung cancer cells to maximize therapeutic synergy. Mechanistically, subjugated resistance by nanococktail therapy was achieved through the altered cellular uptake pathway and compromised DNA repair via the ATM/Chk2/p53 cascade. In mice harboring cisplatin-resistant lung tumor xenografts, administration of the nanococktail outperformed free drug combinations in terms of antitumor efficacy and drug tolerability. Conclusion Overall, our study provides a facile and cost-effective approach for the generation of cytotoxic nanoparticles to synergistically treat chemoresistant cancers.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3