Abstract
Abstract
Background
Histology is considered as a gold standard for analyzing bone architecture. However, histomorphometry is a destructive method and only offers the bone information of a limited location. Micro-computed tomography (μCT) is a non-destructive technology and provides a slice at any site. The aim of this study was to compare the correlation of the Bone-to-Implant Contact ratio (BIC) between 2D micro-CT (μCT) and histomorphometry and to investigate a method for assessing the osseointegration of the implant by 2D μCT.
Methods
A total of 18 implants were divided into three groups (6 implants per group), and inserted into the rabbit tibia defects as follow: implant only (Implant group), implant with β-TCP/hydrogel (TCP group), implant with rhBMP-2 loaded β-TCP/hydrogel composite (BMP-2 group). After 4 weeks of implantation, the specimens were collected to take the micro-CT scan with an aluminum filter and performed H&E staining on the undecalcified sections. The 2D μCT slices were chosen at an angle of 0°, 45°, 90° and 135° with the representative histological section to measure BIC. And the correlations between BICs of 2D μCT and BICs of histology were evaluated.
Results
In each group, BICs at the same sites measured by histomorphometry and corresponding 2D μCT presented the same trend and shown no significant difference between the two methods (P > 0.05). BICs of histological sections and BICs of corresponding 2D μCT slices presented a strong correlation in the implant group (γ = 0.74, P = 0.09), a moderate correlation in the TCP group (γ = 0.46, P = 0.35), a weak correlation in the BMP-2 group (γ = 0.30, P = 0.56). In the implant group, the relationship between BIC-Mean-μCTs and BICs-Histology has presented a significant linear correlation (γ = 0.84, P = 0.04).
Conclusions
Integrating bone information of several 2D μCT slices in different sites to measure BIC is a feasible method for assessing the implant osseointegration.
Funder
Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献