A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering

Author:

Thitiset Thakoon,Damrongsakkul Siriporn,Yodmuang Supansa,Leeanansaksiri Wilairat,Apinun Jirun,Honsawek SittisakORCID

Abstract

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.

Funder

Chulalongkorn University

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3