3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds

Author:

Pensa Nicholas W.,Curry Andrew S.,Bonvallet Paul P.,Bellis Nathan F.,Rettig Kayla M.,Reddy Michael S.,Eberhardt Alan W.,Bellis Susan L.ORCID

Abstract

Abstract Background There is substantial interest in electrospun scaffolds as substrates for tissue regeneration and repair due to their fibrous, extracellular matrix-like composition with interconnected porosity, cost-effective production, and scalability. However, a common limitation of these scaffolds is their inherently low mechanical strength and stiffness, restricting their use in some clinical applications. In this study we developed a novel technique for 3D printing a mesh reinforcement on electrospun scaffolds to improve their mechanical properties. Methods A poly (lactic acid) (PLA) mesh was 3D-printed directly onto electrospun scaffolds composed of a 40:60 ratio of poly(ε-caprolactone) (PCL) to gelatin, respectively. PLA grids were printed onto the electrospun scaffolds with either a 6 mm or 8 mm distance between the struts. Scanning electron microscopy was utilized to determine if the 3D printing process affected the archtitecture of the electrospun scaffold. Tensile testing was used to ascertain mechanical properties (strength, modulus, failure stress, ductility) of both unmodified and reinforced electrospun scaffolds. An in vivo bone graft model was used to assess biocompatibility. Specifically, reinforced scaffolds were used as a membrane cover for bone graft particles implanted into rat calvarial defects, and implant sites were examined histologically. Results We determined that the tensile strength and elastic modulus were markedly increased, and ductility reduced, by the addition of the PLA meshes to the electrospun scaffolds. Furthermore, the scaffolds maintained their matrix-like structure after being reinforced with the 3D printed PLA. There was no indication at the graft/tissue interface that the reinforced electrospun scaffolds elicited an immune or foreign body response upon implantation into rat cranial defects. Conclusion 3D-printed mesh reinforcements offer a new tool for enhancing the mechanical strength of electrospun scaffolds while preserving the advantageous extracellular matrix-like architecture. The modification of electrospun scaffolds with 3D-printed reinforcements is expected to expand the range of clinical applications for which electrospun materials may be suitable.

Funder

National Institutes of Health

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3