Abstract
Abstract
Background
Conventional dissolving microneedles (DMNs) face significant challenges in anti-melanoma therapy due to the lack of active thrust to achieve efficient transdermal drug delivery and intra-tumoral penetration.
Methods
In this study, the effervescent cannabidiol solid dispersion-doped dissolving microneedles (Ef/CBD-SD@DMNs) composed of the combined effervescent components (CaCO3 & NaHCO3) and CBD-based solid dispersion (CBD-SD) were facilely fabricated by the “one-step micro-molding” method for boosted transdermal and tumoral delivery of cannabidiol (CBD).
Results
Upon pressing into the skin, Ef/CBD-SD@DMNs rapidly produce CO2 bubbles through proton elimination, significantly enhancing the skin permeation and tumoral penetration of CBD. Once reaching the tumors, Ef/CBD-SD@DMNs can activate transient receptor potential vanilloid 1 (TRPV1) to increase Ca2+ influx and inhibit the downstream NFATc1-ATF3 signal to induce cell apoptosis. Additionally, Ef/CBD-SD@DMNs raise intra-tumoral pH environment to trigger the engineering of the tumor microenvironment (TME), including the M1 polarization of tumor-associated macrophages (TAMs) and increase of T cells infiltration. The introduction of Ca2+ can not only amplify the effervescent effect but also provide sufficient Ca2+ with CBD to potentiate the anti-melanoma efficacy. Such a “one stone, two birds” strategy combines the advantages of effervescent effects on transdermal delivery and TME regulation, creating favorable therapeutic conditions for CBD to obtain stronger inhibition of melanoma growth in vitro and in vivo.
Conclusions
This study holds promising potential in the transdermal delivery of CBD for melanoma therapy and offers a facile tool for transdermal therapies of skin tumors.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
General Project of Jiangsu Provincial Health Commission
the Open Project of Chinese Materia Medica First-Class Discipline of Nanjing University of Chinese Medicine
Six Talent Peaks Project in Jiangsu Province
“333 Project” of Jiangsu Province
Publisher
American Association for the Advancement of Science (AAAS)
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献