Effect of photoinitiator on chain degradation of hyaluronic acid

Author:

Hong Bo Min,Park Su A,Park Won HoORCID

Abstract

Abstract Objectives Photocrosslinking systems of polymers have been widely studied using UV or visible light irradiation. However, the photodegradation behavior derived from light irradiation was rarely reported, comparing with the photocrosslinking. In this study, the tyramine-modified hyaluronic acid (HA/Tyr) hydrogel was prepared using riboflavin (RF) as a photoinitiator, and the degradation behavior of HA by the reactive oxygen species (ROS) generated in photochemical process was investigated. Materials and methods The HA/Tyr conjugate was synthesized by EDC/NHS chemistry to introduce phenol group. Degree of substitution (DS, %) of phenol group to HA molecule was about 25%. The structural change of HA/Tyr was measured by proton nuclear magnetic resonance (1H-NMR) and attenuated total reflectance infrared spectroscopy (ATR-FTIR), and the rheological properties of photocrosslinked HA/Tyr hydrogel were investigated by rheometer. Results The HA/Tyr solution with 25% substitution formed a stable hydrogel via visible light irradiation in the presence of RF photoinitiator. Rheological data of HA/Tyr solution showed that the storage modulus (G’) was increased with increasing HA concentration. Additionally, it was found that RF initiated by visible light irradiation induced the degradation of HA molecular chain, and consequently reduced the viscosity of HA/Tyr solutions. Conclusion The results indicate that RF-based photoinitiator system caused the degradation of HA molecule by ROS generated in photochemical process as well as the crosslinking of HA/Tyr.

Funder

Chungnam National University

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3