Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction

Author:

Yang Xi,Gao Ling,Wei Yuanfeng,Tan Bowen,Wu Yongzhi,Yi Cheng,Liao Jinfeng

Abstract

Abstract Background As one of the leading threats for health among women worldwide, breast cancer has high morbidity and mortality. Surgical resection is the major clinical intervention for primary breast tumor, nevertheless high local recurrence risk and breast tissue defect remain two main clinical dilemmas, seriously affecting survival and quality of life of patients. Experimental We developed a thermoresponsive and injectable hybrid hydrogel platform (IR820/Mgel) by integration of co-loaded porous microspheres (MPs) and IR820 for preventing postoperative recurrence of breast cancer via photothermal therapy and promoting subsequent breast reconstruction. Results Our results suggested that IR820/Mgel could quickly heated to more than 50.0 ℃ under NIR irradiation, enabling killing effect on 4T1 cells in vitro and prevention effect on post-surgical tumor recurrence in vivo. In addition, the hydrogel platform was promising for its minimal invasion and capability of filling irregularly shaped defects after surgery, and the encapsulated MPs could help to increase the strength of gel to realize a long-term in situ function in vivo, and promoted the attachment and anchorage property of normal breast cells and adipose stem cells. Conclusions This photothermal hydrogel platform provides a practice paradigm for preventing locally recurrence of breast cancer and a potential option for reconstruction of breast defects. Graphic abstract

Funder

Sichuan University Postdoctoral Interdisciplinary Innovation Fund

National Natural Science Foundation

Sichuan Science and Technology Program

Sichuan University Spark Project

The Fundamental Research Funds for Central Universities

Postdoctoral Research Foundation of China

Post Doctor Research Project, West China Hospital, Sichuan University

1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3