Bi2S3/Ti3C2-TPP nano-heterostructures induced by near-infrared for photodynamic therapy combined with photothermal therapy on hypoxic tumors

Author:

Jiang Hanwen,Sun Jingxian,Liu Fucong,Zhao Yuanjiao,Chen Xin,Dai Changsong,Wen Zhaohui

Abstract

Abstract Background Photodynamic therapy (PDT) efficacy of bismuth sulfide (Bi2S3) semiconductor has been severely restricted by its electron–hole pairs (e−h+) separation inefficiency and oxygen (O2) deficiency in tumors, which greatly hinders reactive oxygen species (ROS) generation and further clinical application of Bi2S3 nanoparticles (NPs) in biomedicine. Results Herein, novel Bi2S3/titanium carbide (Ti3C2) two-dimensional nano-heterostructures (NHs) are designed to realize multimode PDT of synchronous O2 self-supply and ROS generation combined with highly efficient photothermal tumor elimination for hypoxic tumor therapy. Bi2S3/Ti3C2 NHs were synthesized via the in situ synthesis method starting from Ti3C2 nanosheets (NSs), a classical type of MXene nanostructure. Compared to simple Bi2S3 NPs, Bi2S3/Ti3C2 NHs significantly extend the absorption to the near-infrared (NIR) region and enhance the photocatalytic activity owing to the improved photogenerated carrier separation, where the hole on the valence band (VB) of Bi2S3 can react with water to supply O2 for the electron on the Ti3C2 NSs to generate ·O2 and ·OH through electron transfer. Furthermore, they also achieve 1O2 generation through energy transfer due to O2 self-supply. After the modification of triphenylphosphium bromide (TPP) on Bi2S3/Ti3C2 NHs, systematic in vitro and in vivo evaluations were conducted, revealing that the synergistic-therapeutic outcome of this nanoplatform enables complete eradication of the U251 tumors without recurrence by NIR laser irradiation, and it can be used for computed tomography (CT) imaging because of the strong X-ray attenuation ability. Conclusion This work expands the phototherapeutic effect of Bi2S3-based nanoplatforms, providing a new strategy for hypoxic tumor theranostics.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3