Serpin-loaded extracellular vesicles promote tissue repair in a mouse model of impaired wound healing

Author:

Park Dong Jun,Duggan Erika,Ho Kayla,Dorschner Robert A.,Dobke Marek,Nolan John P.,Eliceiri Brian P.ORCID

Abstract

AbstractChronic metabolic diseases such as diabetes are characterized by delayed wound healing and a dysregulation of the inflammatory phase of wound repair. Our study focuses on changes in the payload of extracellular vesicles (EVs) communicating between immune cells and stromal cells in the wound bed, which regulate the rate of wound closure. Adoptive transfer of EVs from genetically defined mouse models are used here to demonstrate a functional and molecular basis for differences in the pro-reparative biological activity of diabetic (db/db) vs. wildtype EVs in wound healing. We identify several members of the Serpin family of serine protease inhibitors that are absent in db/db EVs, then we overexpress Serpin A1, F2 and G1 in EVs to evaluate their effect on wound healing in db/db mice. Serpins have an important role in regulating levels of elastase, plasmin and complement factors that coordinate immune cell signaling in full thickness wounds in a diabetic model. Here, we establish a novel therapeutic approach by engineering the payload of EVs based on proteomic analysis. Serpin-loaded EVs were used to rescue the Serpin deficiency identified by proteomics and promote wound healing in db/db mice, as well as evaluated how EVs affected extracellular matrix remodeling and the resolution of tissue injury. Therefore, we propose that the identification of EV payloads that are downregulated in diabetic wounds can be systematically analyzed for their functional activity and potential as a therapeutic, based on whether their re-expression in engineered EVs restores normal kinetics of tissue repair in chronic wounds. Graphical Abstract

Funder

Korea Health Industry Development Institute

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3