Superior TRAIL gene expression and cancer cell apoptosis mediated by highly branched-linear poly(β-amino ester)s

Author:

Zhao Yitong,Bo Tao,Wang Chenfei,Yao Dingjin,Pan Chaolan,Xu Weiyi,Zhou Hao,Li Ming,Zhang Si

Abstract

AbstractExtensive efforts have been dedicated to enhancing the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer cells for the development of effective cancer treatments. However, highly safe and efficient delivery of TRAIL gene remains a significant challenge, especially using cationic polymers. Here, a series of highly branched-linear poly(β-amino ester)s (H-LPAEs) are developed through a unique oligomer branching strategy. H-LPAEs exhibit a more uniform distribution of linear segments and branching units, leading to excellent DNA condensation and favorable physicochemical properties of H-LPAE/DNA polyplexes. In SW1353 and BMSC cells, the optimized H-LPAEs, H-LPAEB4−S5−TMPTA, achieves superior gene transfection efficiency of 58.0% and 33.4%, which were 2.5-fold and 2.0-fold higher than that of the leading commercial gene transfection reagent, Lipofectamine 3000. Excitingly, H-LPAEB4−S5−TMPTA mediated 56.7% and 28.1% cell apoptosis in HepG2 cells and HeLa cells highlighting its potential application in cancer gene therapy. In addition, locally administered H-LPAEB4−S5−TMPTA delivered TRAIL DNA to HepG2 xenograft tumors and inhibited tumor growth in vivo. This study not only proposes a novel strategy for synthesizing poly(β-amino ester)s with a unique branched-linear topology but also identifies a promising candidate for highly efficient TRAIL gene transfection.

Funder

the Clinical Research Special Project of Shanghai Municipal Health Commission

the National Natural Science Foundation of China

Medical Engineering Cross Research Foundation of Shanghai Jiaotong University

the Science and Technology Innovation Action Plan of Shanghai Science and Technology committee

the Outstanding Youth Fund of Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3