Cell-surface photochemistry mediated calcium overload for synergistic tumor therapy

Author:

Wang Jun,Wang Wei,Shen Qingmei,Lan Lan,Guan Cuiping,Xu Xinchang,Li Weishuo,Du Yongzhong

Abstract

AbstractCalcium (Ca2+) is essential for mitochondrial homeostasis and function coordination, particularly in cancer cells that metabolize frequently to sustain their growth. Photochemistry mediated calcium overload has attracted lots of attention as an effective way to achieve tumor suppression. Herein, we developed a photonanomedicine to synergistically induce calcium overload via cell-surface photochemistry and thus tumor suppression. Specifically, the photosensitizer, protoporphyrin IX (PpIX) was loaded onto upconversion nanoparticles (UCNP), which was subsequently modified by a polymer bearing photo-crosslinking cinnamate (CA) groups. The resulting nanoparticle was further functionalized by anti-CD20 aptamers (Apt), to give photonanomedicine. The interaction between CD20 receptors and anti-CD20 aptamers allowed photonanomedicine to accurately attach onto the Raji cell surface after an intravenous injection. Following the local application of a 980 nm NIR laser, the photonanomedicine was able to capture the NIR light and convert it into ultraviolet (UV) light. On one hand, the converted UV light led the crosslinking of cinnamate groups in photonanomedicine, further stimulating the clustering of CD20 receptors and causing Ca2+ influx. On the other hand, the UV light could simultaneously excited PpIX to generate reactive oxygen species (ROS) in situ to break down the integrity of cell membrane and lead to an influx of Ca2+. The synergistic Ca2+ overload mediated by photonanomedicine exhibited an enhanced and superior anti-tumor efficacy. We believe this photonanomedicine expands the toolbox to manipulate intracellular Ca2+ concentration and holds a great potential as an anti-tumor therapy.

Funder

the Construction Fund of Medical Key Disciplines of Hangzhou

the National Natural Science Foundation of China

the National Science Fund for Distinguished Young Scholar of Jiangsu Province

Fundamental Research Funds for the Central Universities

Open Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University

the Natural Science Foundation of Zhejiang Province

the National Key Research and Development Projects Intergovernmental Cooperation in Science and Technology of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3