Author:
Mohammadi Somayeh,Salimi Abdollah,Hoseinkhani Zohreh,Ghasemi Foad,Mansouri Kamran
Abstract
Abstract
Background
MicroRNAs have short sequences of 20 ~ 25-nucleotides which are similar among family members and play crucial regulatory roles in numerous biological processes, such as in cell development, metabolism, proliferation, differentiation, and apoptosis.
Results
We reported a strategy for the construction of a dual-emission fluorescent sensor using carbon dots (CDs) and confirmed their applications for ratiometric microRNA-21 sensing and bioimaging of cancer cells in a microfluidic device. The composition of blue CDs (B-CDs) and yellow CDs (Y-CDs) depicts dual-emission behavior which is centered at 409 and 543 nm under an excitation wavelength of 360 nm. With increasing microRNA-21 concentration, the robust and specific binding of DNA probe functionalized B-CDs to complementary microRNA-21 target induced perturbations of probe structure and led to changing fluorescence intensity in both wavelengths. Consequently, the ratio of turn-on signal to turn-off signal is greatly altered. With monitoring of the inherent ratiometric fluorescence variation (ΔF540nm/ΔF410nm), as-prepared BY-CDs were established as an efficient platform for ratiometric fluorescent microRNA-21 sensing, with a wide linear range of 0.15 fM to 2.46 pM and a detection limit of 50 aM.
Conclusions
Furthermore, the proposed assay was applied for detecting microRNA-21 in dilute human serum samples with satisfactory recovery and also in MCF-7 cell lines in the range 3000 to 45,000 (cell mL−1) with a detection limit (3 cells in 10 μL), demonstrating the potential of the assay for clinic diagnosis of microRNA-associated disease. More importantly, the images revealed that MCF-7 cells well labeled with BY-CDs could exhibit the applicability of the proposed microfluidic system as an effective cell trapping device in bioimaging.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献