Author:
Sun Peng,Cheng Bingsheng,Ru Jiaxi,Li Xiaoyan,Fang Guicun,Xie Yinli,Shi Guangjiang,Hou Jichao,Zhao Longwei,Gan Lipeng,Ma Lina,Liang Chao,Chen Yin,Li Zhiyong
Abstract
AbstractThe pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has had a profound impact on the global health and economy. While mass vaccination for herd immunity is effective, emerging SARS-CoV-2 variants can evade spike protein-based COVID-19 vaccines. In this study, we develop a new immunization strategy by utilizing a nanocarrier, dendritic mesoporous silica nanoparticle (DMSN), to deliver the receptor-binding domain (RBD) and conserved T-cell epitope peptides (DMSN-P-R), aiming to activate both humoral and cellular immune responses in the host. The synthesized DMSN had good uniformity and dispersion and showed a strong ability to load the RBD and peptide antigens, enhancing their uptake by antigen-presenting cells (APCs) and promoting antigen delivery to lymph nodes. The DMSN-P-R vaccine elicited potent humoral immunity, characterized by highly specific RBD antibodies. Neutralization tests demonstrated significant antibody-mediated neutralizing activity against live SARS-CoV-2. Crucially, the DMSN-P-R vaccine also induced robust T-cell responses that were specifically stimulated by the RBD and conserved T-cell epitope peptides of SARS-CoV-2. The DMSN demonstrated excellent biocompatibility and biosafety in vitro and in vivo, along with degradability. Our study introduces a promising vaccine strategy that utilizes nanocarriers to deliver a range of antigens, effectively enhancing both humoral and cellular immune responses to prevent virus transmission.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献