Abstract
Abstract
Background
As an efficient tumor immunotherapy, PD-1 antibody has been gradually used in clinical tumor treatment, but the low response rate and excessive immune response limit its extensive application.
Results
Herein, a therapeutic regime for the reinvigoration and activation of the tumor immune microenvironment is introduced to improve the anti-tumor effect of the PD-1 antibody. To comprehensively improve the effect of the immunotherapy and reduce excessive immune response, a biomimetic cascade targeting nanosystem, siRNA@PLOV, which was fused by photothermal sensitive liposomes (PTSLs) and attenuated Salmonella outer membrane vesicles (OMVs), was administered in the tumor therapy for targeting of tumor tissues and T cells within tumor respectively. The fused PLOVs which not only retained the biological character of the OMVs, but also enhanced the drug loading ability. The results demonstrated that the immunogenicity of OMVs and photothermal effects can obviously increase the infiltration of T cells and the silencing of CD38 can effectively improve the T cell cytotoxicity, especially combining with PD-1 antibody.
Conclusions
Interesting, this study revealed that anti-PD-1 administration on the 5th day after siRNA@PLOV treatment had the best performance in killing tumors compared with other groups. In addition, this new therapeutic regime also presents a novel strategy for inducing “vaccine effects”, conclusively highlighting its potential in preventing tumor recurrence and improving prognosis.
Graphical Abstract
Funder
National Natural Science Foundation of China
Project Supported by the Natural Science Foundation of Jiangsu Province, China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献