Multimetallic nanoparticles decorated metal-organic framework for boosting peroxidase-like catalytic activity and its application in point-of-care testing

Author:

Wu Pian,Gong Fangjie,Feng Xiangling,Xia Yong,Xia Lehuan,Kai Tianhan,Ding Ping

Abstract

AbstractMetal-organic frameworks (MOFs) are a sort of promising peroxidase-like nanozyme but face the challenge that the inorganic nodes in most of the MOF structures are generally blocked by the organic linkers. Further enhancement or activation of their peroxidase-like activity plays an important role in developing MOF-based nanozymes. Herein, a multimetallic nanoparticle (NP) decorated-MOF, Cu/Au/Pt NP decorated-Cu-TCPP(Fe) nanozyme (CuAuPt/Cu-TCPP(Fe)) was synthesized in situ and served as a peroxidase-like nanozyme. The peroxidase-like activity of this stable CuAuPt/Cu-TCPP(Fe) nanozyme was enhanced due to the decreased potential barriers for *OH generation in the catalytic process. Owing to the remarkable peroxidase-like activity, a CuAuPt/Cu-TCPP(Fe)-based colorimetric assay was established for the sensitive determination of H2O2 and glucose with the limit of detection (LOD) of 9.3 µM and 4.0 µM, respectively. In addition, a visual point-of-care testing (POCT) device was developed by integrating the CuAuPt/Cu-TCPP(Fe)-based test strips with a smartphone and was employed for a portable test of 20 clinical serum glucose samples. The results determined by this method agree well with the values deduced by clinical automatic biochemical analysis. This work not only represents an inspiration for the usage of MNP/MOF composite as a novel nanozyme for POCT diagnosis, but also provides a deeper insight and understanding into the enhanced enzyme-mimic effect of MNP-hybrid MOF composites, which in turn will guide the engineering of MOF-based functional nanomaterials.Graphical Abstract

Funder

the science and technology innovation Program of Hunan Province

the Start-up Funds from Central South University

the National Natural Science Foundation of China

the Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3