Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading

Author:

Ma Zhongzheng,Zheng Yang,Chao Zijian,Chen Hongtao,Zhang Yunhui,Yin Meizhen,Shen Jie,Yan ShuoORCID

Abstract

AbstractNanoparticles have been widely applied as gene carrier for improving RNA interference (RNAi) efficiency in medical and agricultural fields. However, the mechanism and delivery process of nanoparticle-mediated RNAi is not directly visualized and elucidated. Here we synthesized a star polymer (SPc) consisted of a hydrophilic shell with positively-charged tertiary amine in the side chain, which was taken as an example to investigate the mechanism in gene delivery. The SPc could assemble with dsRNA spontaneously through electrostatic force, hydrogen bond and van der Waals force. Interestingly, the SPc could protect dsRNA from degradation by RNase A and insect hemolymph, thus remarkably increasing the stability of dsRNA. Meanwhile, the SPc could efficiently promote the cellular uptake and endosomal escape for intracellular spreading of dsRNA. Transcriptome analysis revealed that the SPc could up-regulate some key genes such as Chc, AP2S1 and Arf1 for activating clathrin-mediated endocytosis. Furthermore, the suppression of endocytosis hindered the cellular uptake of SPc-delivered dsRNA in vitro, and the subsequent RNAi effect was also disappeared in vivo. To our knowledge, our study is the first direct visualization of the detailed cellular delivery process and mechanism of nanocarrier-mediated gene delivery. Above mechanism supports the application of nanocarrier-based RNAi in gene therapy and pest management. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3