Green synthesis of glyco-CuInS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging

Author:

Guan Xiaolin,Zhang Liyuan,Lai Shoujun,Zhang Jiaming,Wei Jingyu,Wang Kang,Zhang Wentao,Li Chenghao,Tong Jinhui,Lei Ziqiang

Abstract

AbstractGlyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the “direct” reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0–4.0 nm. They exhibited well-separated dual emission in the visible region (500–590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from − 23.9 to − 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Doctoral Program Fund of Lanzhou University of Arts and Sciences

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference63 articles.

1. Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology-based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev. 2022;12:1–106.

2. Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: a comprehensive review. J Drug Deliv Sci Tec. 2023;80: 104156.

3. Sha Q, Fei J, Tu C, Liu B, Hu Z, Liu X. A universal strategy of glyconanoparticle preparation using a bifunctional linker for lectin sensing and cell imaging. Microchim Acta. 2022;189:1–11.

4. Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron. 2016;76:113–30.

5. Norouzi F, Pourmadadi M, Yazdian F, Khoshmaram K, Mohammadnejad J, Sanati MH, Chogan F, Rahdar A, Baino F. PVA-based nanofibers containing chitosan modified with graphene oxide and carbon quantum dot-doped TiO2 enhance wound healing in a rat model. J Funct. 2022;13:300.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3