A humanized trivalent Nectin-4-targeting nanobody drug conjugate displays potent antitumor activity in gastric cancer

Author:

Wu Yue,Zhu Min,Sun Baihe,Chen Yongting,Huang Yuping,Gai Junwei,Li Guanghui,Li Yanfei,Wan Yakun,Ma Linlin

Abstract

Abstract Background Gastric cancer represents a highly lethal malignancy with an elevated mortality rate among cancer patients, coupled with a suboptimal postoperative survival prognosis. Nectin-4, an overexpressed oncological target for various cancers, has been exploited to create antibody-drug conjugates (ADCs) to treat solid tumors. However, there is limited research on Nectin-4 ADCs specifically for gastric cancer, and conventional immunoglobulin G (IgG)-based ADCs frequently encounter binding site barriers. Based on the excellent tumor penetration capabilities inherent in nanobodies (Nbs), we developed Nectin-4-targeting Nb drug conjugates (NDCs) for the treatment of gastric cancer. Results An immunized phage display library was established and employed for the selection of Nectin-4-specific Nbs using phage display technology. Subsequently, these Nbs were engineered into homodimers to enhance Nb affinity. To prolong in vivo half-life and reduce immunogenicity, we fused an Nb targeting human serum albumin (HSA), resulting in the development of trivalent humanized Nbs. Further, we site-specifically conjugated a monomethyl auristatin E (MMAE) at the C-terminus of the trivalent Nbs, creating Nectin-4 NDC (huNb26/Nb26-Nbh-MMAE) with a drug-to-antibody ratio (DAR) of 1. Nectin-4 NDC demonstrated excellent in vitro cell-binding activities and cytotoxic efficacy against cells with high Nectin-4 expression. Subsequent administration of Nectin-4 NDC to mice bearing NCI-N87 human gastric cancer xenografts demonstrated rapid tissue penetration and high tumor uptake through in vivo imaging. Moreover, Nectin-4 NDC exhibited noteworthy dose-dependent anti-tumor efficacy in in vivo studies. Conclusion We have engineered a Nectin-4 NDC with elevated affinity and effective tumor uptake, further establishing its potential as a therapeutic agent for gastric cancer. Graphical abstract

Funder

Shanghai Innovation Fund Program

Academic Mentorship for Scientific Research Cadre Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3