Abstract
Abstract
Background
The use of drug nanocarriers to encapsulate drugs for oral administration may become an important strategy in addressing the challenging oral absorption of some drugs. In this study—with the premise of controlling single variables—we prepared model nanoparticles with different particle sizes, surface charges, and surface hydrophobicity/hydrophilicity. The two key stages of intestinal nanoparticles (NPs) absorption—the intestinal mucus layer penetration stage and the trans-intestinal epithelial cell stage—were decoupled and analyzed. The intestinal absorption of each group of model NPs was then investigated.
Results
Differences in the behavioral trends of NPs in each stage of intestinal absorption were found to result from differences in particle properties. Small size, low-magnitude negative charge, and moderate hydrophilicity helped NPs pass through the small intestinal mucus layer more easily. Once through the mucus layer, an appropriate size, positive surface charge, and hydrophobic properties helped NPs complete the process of transintestinal epithelial cell transport.
Conclusions
To achieve high drug bioavailability, the basic properties of the delivery system must be suitable for overcoming the physiological barrier of the gastrointestinal tract.
Funder
Key Project of National Science and Technology
Key Development Project of Yantai
Youth Foundation Project of Yantai University
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献