Label-free cell based impedance measurements of ZnO nanoparticles—human lung cell interaction: a comparison with MTT, NR, Trypan blue and cloning efficiency assays

Author:

Bozzuto Giuseppina,D’Avenio Giuseppe,Condello Maria,Sennato Simona,Battaglione Ezio,Familiari Giuseppe,Molinari AgneseORCID,Grigioni Mauro

Abstract

Abstract Background There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. Results ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. Conclusions ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies. Graphic Abstract

Funder

regione lazio

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3